
Building a high-level untyped functional language

Before we begin...
Welcome back to the programming languages course! Just for the sake of better mutual understanding, let’s give that handout syntax
once again here:

• Whatever text is written in a regular, black-on-white font is essential and couldn’t be skipped. This is usually something you
should take your time and read through carefully. If it’s bold or italic, doubly so!

• If text appears in a darker grey box with a “Sidenote” caption, it’s usually an interesting sidenote on the topic in question.
These are usually there to tell you things you would come to realize for yourselves at some later point.

• If text appears in a dashed, lighter grey box, with a caption like “Don’t drink too much Kool-aid”, this is usually an example,
counter-example, question or something to spend some time thinking about. We’re interested in your opinions, if you’d give
them.

• Code segments and equations are given in a monospaced font, with explanations usually following or preceding them.

• Anything else is a comment.

1 Overview
Having learned Scala for the previous assignment, we can use this new language as a template for our first escapade into making one
of our own.

We do our best in this part of the course to create a language that looks very similar to Scala, and to show how to model its
semantics. Out of this, you get first-hand experience building a complex high-level language, and we’re leveraging the fact that
Scala’s expected behaviours are still fresh in your mind.

Sidenote: Even though SimpleScala will initially be quite a bit different (lacking a type system and
such), future assignments will bring us closer step by step:

• with assignment 2, we will have an untyped high-level interpreter for SimpleScala ;

• assignment 3 will introduce a simple type-system;

• assignment 5 will add a polymorphic type-system and enable us to do generics;

Somewhere along the way, we will try to write SimpleScala for a while, to see that it actually can be
used as a real language. You will be pleasantly surprised.

First, we’ll see how similar SimpleScala will be to Scala itself syntactically. Then, we will follow what was presented in the
first handout (about describing semantics; look it up if you’re not too sure), by building a state description and state transition
table. Here, we’ll introduce a new concept that’s going to prove useful for more complex states: continuations. We haven’t used
continuations in the previous handout as the semantics there were simple enough not to require it, however, if we want any feature
that you all know and love from any language more readable than MIPS, that’s the way to go.
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2 Syntax

Controlling complexity is the essence of computer
programming.

Brian Kernighan

Syntactically, SimpleScala tries to be similar to Scala, where this is possible. To get to deserve being named “simple”,
SimpleScala cuts some of the features, and introduces some other features later on. From a high-end perspective, the biggest
change is that SimpleScala is fully functional, while Scala is an object-oriented and functional hybrid. There are no classes or
traits in our language, and the main building block is a function.

In fact, our whole program is a list of function definitions followed by a single expression which will be executed and (hopefully)
use those defined functions for something useful!

Sidenote: You might realize that this is exactly how program execution in C works: the entry point is
the code inside the function main, which calls other functions defined in main’s range. C, however,
isn’t a functional language in the traditional sense (except in crazy musings...) and a better example
might be something from the ML family, Haskell or Lisp.

2.1 Formalization
As shown in handout 1, we give a formal writeup of the syntax of SimpleScala . Here, we use

−−−−−−−−−→
something to mean “this is a list of

somethings”.

x ∈ Variable str ∈ String b ∈ Boolean i ∈ Z n ∈ N

fn ∈ FunctionName cn ∈ ConstructorName

e ∈ Exp ::= x | str | b | i | unit | e1 ⊕ e2

| x⇒ e | fn(e) | e1(e2)
| if (e1) e2 else e3

| {
−→
val e}

| ( ~e ) | e. n

| cn(e) | e match {−−−→case}

val ∈ Val ::= val x = e

case ∈ Case ::= case cn(x)⇒ e | case ( ~x )⇒ e

⊕ ∈ Binop ::= + | − | ∗ | / | ∧ | ∨ | < | ≤

def ∈ Def ::= def fn(x) = e

prog ∈ Program ::=
−−→
def e

The thing not written in the syntax is that x ∈ Variable and f n ∈ FunctionName always begin with a lower case, while cn ∈
ConstructorName always start with an upper case.

2.2 Simplifications
There are several points of simplification that were made in the design of untyped SimpleScala that make it distinct from Scala. All
of these will be briefly elaborated on before giving an outline of the syntax and semantics.

2.2.1 Tuples

Tuples are a part of the syntax, marked with ( a, b, ..., z ). Tuple access is the same as in Scala, namely tup. n, where n is a
natural number. Tuples can be matched upon, exactly as in Scala. Tuples must contain at least two elements.
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2.2.2 Blocks

Val-expressions come only at the beginning of a block, followed by a single expression. This constitutes as a block, surrounded by a
pair of braces. Blocks must contain at least one val-expression.

Sidenote: The inability to put val-expressions anywhere except the start of a block might seem daunt-
ing and limiting, but you can think of it as preparation for some process: we prepare all the pieces and
then do a computation with it. This is very common in functional programming, basically following
this quote:

“Beauty is more important in computing than anywhere else in technology because software is so
complicated. Beauty is the ultimate defence against complexity.” – David Gelernter

2.2.3 Functions

Functions always take one parameter, but as anonymous functions are part of the language, we can do the following:

def foo ( b a r ) = baz ⇒ . . .

To call these curried functions, we can call this precisely as in Scala:

foo ( b a r ) ( baz )

If you’re not a fan of these, you are always free to pass a single tuple in, holding multiple arguments inside, as shown in the following
example:

def foo ( b a r b a z ) = {

v a l b a r = b a r b a z . 1
v a l baz = b a r b a z . 2
. . .

}

Another way to do the same thing would be to use pattern-matching on the tuple:

def foo ( b a r b a z ) = {

b a r b a z match {

case ( bar , baz ) ⇒ . . .
}

}

These two pieces of code have the same meaning.
To call a function with tuple arguments, we need to pass a tuple in:

foo ( ( bar , baz ) )

Don’t drink too much Kool-Aid: Why do you think we made all the argument lists have only one ar-
gument? Do you have an idea of how much more complexity it would add to have an arbitrary number
of arguments for functions and constructors? An educated guess? Post it to Piazza if you want to talk
about it!

2.2.4 Data Constructors

Data constructors are tagged value, so to speak. They represent a value with a name tag on it. This tag makes it distinguishable, and
even though it has no meaning by itself, it can be pattern matched upon. This will be used instead of Scala’s case classes. We can
construct a data constructor just by declaring it, like Nil(unit) in the example above.

3 Semantics
As for the semantics (remember, the meaning of our programs), this is where the differences really show. In this section, we will be
talking about three topics, some of which might be new, introduced by our more complex semantics (thus, more important for you,
the reader!):
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• Values, which give different syntactic elements different domains, and thus specialized semantics;

• Continuations – a way to make computations splittable, which will make life easy for us;

• States, which we discussed previously (in handout 1), whose transition is what semantics is all about

Let’s jump right in.

3.1 Values
Let’s first do the possible values that can appear in our programs. First, because our programs now have variables (which are just
named values), we define an environment that fits that description: a map between variables and values.

ρ ∈ Env = Variable→ Value

Now, we’ll be defining separate value domains for strings, booleans, integers, unit, closures (anonymous functions), constructors and
tuples. These will map into what our variables can hold in an environment.

v ∈ Value = strV(String) +

boolV(Boolean) +

intV(Z) +

unitV +

closureV(Variable × Exp × Env) +

constructorV(ConstructorName × Value) +

tupleV(
−−−−→
Value)

The extra V at the end of the semantic names are there to distinguish values from other semantic elements that we’ll introduce soon.
Values, as they are here, don’t exist in the MIPS assembly semantics, because of how simple it is.

Kyle rants: Well, technically, values do exist in the MIPS assembly, it’s just that there’s only one kind
of value. The big difference here is that we have different kinds of values (domains), and so we need
semantic tags to distinguish them easily.)

With every layer of indirection we introduce (every single thing that makes our language more complex and, in the end, useful), we
also introduce new elements to our semantics.

Sidenote: As a quick notation helper, you can read + as “or” and × as “and” when reading semantic
descriptions. As always, we use

−−−−−→
things to mark a list of things.

You might notice that all the semantic values are basically wrappers around syntactic AST nodes.
This is correct: semantics gives meaning to syntax; it wraps certain elements of the syntax into a layer
of meaning.

One can imagine that in a language that has complicated arithmetic expressions, these computations won’t be as easy to do as with
simple addu et al. in MIPS. As a motivating example, imagine that we need to calculate the value of this expression:

3 + 4 ∗ 2

To do this calculation, we have to start at the left most operand, resolve it, and then find out what the right operand is. In the addition
above, the right operand might be tricky to find (it might seem that it’s the expression 4 while it’s actually 4 ∗ 2), and it would be
good for us to remember what we were doing previously, so that once we discover the full right operand, we can return and continue
our addition.

These situations are what we will be using continuations, and a continuation stack for.
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3.2 Continuations
Continuations are a very general mechanism and can be used to implement almost all of the control flow mechanisms (think: if,
while, etc.) of a language! They are best learned through practice, but if you can’t wait, here’s a homegrown example.

This was given by one Luke Palmer and became a rather famous thing, called the sandwich example:

A computation starts...
Say you’re in the kitchen in front of the fridge, thinking about eating a sandwich. Unfortunately, there’s no sandwich around.

You make a continuation right there (a sticky note) and put it on the fridge. You will look back at this to remember what you were
thinking, and the continuation says “Eat sandwich!”

We remember where we were...
Then you get some turkey and bread out of the refrigerator and make yourself a sandwich. Once that action is done, you have

nothing else to do, so you look to the fridge, to see if you forgot something and oh! There’s a continuation!1

We go back and continue!
You invoke the continuation on top of the stack of glued sticky-notes, and return to the moment when you were standing in front

of the fridge, thinking about eating a sandwich. Fortunately, there’s a sandwich on the counter, so you eat it.

3.2.1 Implementation

κ ∈ Kont = binopLeftK(Binop × Exp) +

binopRightK(Value × Binop) +

restoreK(Env) +

anonFunLeftK(Exp) +

anonFunRightK(Variable × Exp × Env) +

namedFunK(FunctionName) +

ifK(Exp × Exp) +

blockK(Variable ×
−−→
Val × Exp) +

tupleK(
−−→
Exp ×

−−−−→
Value) +

accessK(N) +

constructorK(ConstructorName) +

matchK(
−−−→
Case)

As with the values ending with V, we can see that continuations end with a K. The reasons behind the usage of the letter “K” and
writing “Kont” instead of “Cont” for the shorter name of continuations is historic (and geographic, coming from the Netherlands in
the 1960s). Never lose sight of what a continuation is: instead of presenting what we’re doing now, it presents what we now know we
will definitely have to do in the future! Continuations are put onto the continuation stack with a reminder of where we were, as we
set off to do something else.

3.3 States
Our states in SimpleScala are defined as a product of three factors: our current term, which is either a semantic value (something
that has known meaning) or a syntactic expression (something that we have to figure out); the environment that holds our variable
bindings; and the continuation stack which remembers what we were doing before. If this stack is empty, the current term is what
our program produced at its end (and there is nothing left to do, so we’re done)!

t ∈ Term = Exp + Value

ς ∈ State = Term × Env ×
−−−→
Kont

Because we distinguish functions from variables by nothing else than finding them defined with def, we have accumulated all the
functions before running the semantics into a de f s mapping (Variable × Exp, because we always have one argument and return an

1You are obviously a goldfish.

5

https://groups.google.com/forum/#!msg/perl.perl6.language/-KFNPaLL2yE/_RzO8Fenz7AJ


expression, but you knew that):

defs ∈ Defs = FunctionName→ (Variable × Exp)

Now that we know what our states will be, we can talk about transitions. We’ll break the table down into pieces, for ease of use
(as it’s quite large). First, let’s see what happens if the current term is a syntactic expression (so, something that as of yet has no
meaning). We’ll have to cover all of the syntactic terms, of course, but some of them are less productive than others. Baby steps.

# t Premises tnew ρnew
−−→κnew

1 str strV(str) ρ ~κ

2 b boolV(b) ρ ~κ

3 i intV(i) ρ ~κ

4 unit unitV ρ ~κ

5 x x ∈ keys(ρ), v = ρ(x) v ρ ~κ

What the first four rules are basically saying is that a certain kind of syntactic element is mapped exactly to a certain kind of
semantic element. Everything else stays the same: there are no remembered actions and there are no changes to the environment.

The fifth rule (which happens when we access a variable), has a premise, saying that “if the current environment ρ has a key
called x, let v be the value of that key. If these premises are okay, the new term we’ll have is that v, and nothing else changes.”

Don’t drink too much Kool-Aid: This might be a bit hard to fathom at first. Try giving it a few reads
and try going through an example by hand once you finish this handout. The semantic transition table
should be traced, not remembered.

# t Premises tnew ρnew
−−→κnew

6 e1 ⊕ e2 e1 ρ binopLeftK(⊕, e2) :: ~κ
7 v ~κ = binopLeftK(⊕, e) :: ~κ2 e ρ binopRightK(v,⊕) :: ~κ2

8 v2 ~κ = binopRightK(v1,⊕) :: ~κ2, v3 ρ ~κ2
v3 = evalOp(v1,⊕, v2)

The next three rules have to do with binary operations, and they will introduce the first case where we have the usage of a con-
tinuation: if we encounter a e1 ⊕ e2 syntactic expression, we will try to resolve e1, while remembering that we have to go back to
binopLeftK(⊕, e2), once we’re done with it.

Then, if we found a value v as our current term, and the head of the continuation stack is a binopLeftK(⊕, e), try to resolve that e
from the continuation, while remembering whatever it is we have as v in a binopRightK(v,⊕).

If we now come to a state at some point where we have a value v2 as our current term, and the head of the continuation stack is a
binopRightK(v1,⊕) (don’t mind the names and indices, they are arbitrary), we will deduce a value v3 that is ⊕ executed on v1 and v2,
represented by the helper function evalOp. This v3 is now the next current value and our continuation stack is left without the binary
operation, as we’ve completed it.

Sidenote: The names, binopLeftK and binopRightK, are kind of weird:

• binopLeftK indicates that the leftmost expression is currently being evaluated, and it stores what
we’ll need to evaluate next, once that is done

• binopRightK indicates that the rightmost expression is currently being evaluated, and it saves
what the left side gave us for after the right side is done

After both sides are done, the meaning of the operation itself can be reasoned about.
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Moving on, we reach function calls:

# t Premises tnew ρnew
−−→κnew

9 x⇒ e closureV(x, e, ρ) ρ ~κ

10 e1(e2) e1 ρ anonFunLeftK(e2) :: ~κ
11 closureV(x′, e′, ρ′) ~κ = anonFunLeftK(e) :: ~κ2 e ρ anonFunRightK(x′, e′, ρ′) :: ~κ2

12 v ~κ = anonFunRightK(x′, e′, ρ′) :: ~κ2 e′ ρ′[x′ 7→ v] restoreK(ρ) :: ~κ2

13 fn(e) fn ∈ keys(defs) e ρ namedFunK(fn) :: ~κ
14 v ~κ = namedFunK(fn) :: ~κ2, e {}[x 7→ v] restoreK(ρ) :: ~κ2

(x · e) = defs(fn)

If you followed the logic from the binary operation example, this is mostly the same. Rule 9 defines what happens when we meet
a syntactic closure, x ⇒ e, very much in the spirit of rules 1-4. Rule 10 is quite free-form, so it explores what e1 is, while preparing
us for an anonymous function call, saving the argument e2 in that continuation.

Once we figure out that e1 indeed was a closure, we come to rules 11 and 12, which repeat the logic of binopLeft and binopRight
almost to the letter. You might notice a difference here in rule 12’s ρnew column, as we encounter the ρ′[x′ 7→ v] notation. This means
“update ρ′ with the mapping x′ 7→ v”.

Rule 13 introduces actual named functions, putting a namedFunK onto the continuation stack while resolving the function ar-
gument: rule 14 calls the function once the argument is resolved. This, however, is quite different, looking at ρ and −−→κnew: function
calls create new environments, with only the function argument x mapped to the value v, and a continuation restoreK that saves the
previous environment, so that we might return to it once the function call is done.

The rule to deal with the actual restoring of a state is the following:

# t Premises tnew ρnew
−−→κnew

15 v ~κ = restoreK(ρ′) :: ~κ2 v ρ′ ~κ2

This is basically a return: if we only have a semantic value as the current term, and there’s a restoreK next, we have our wanted
result, so we bring it back: the same value is passed as the next current term, but the environment is replaced with the one from the
continuation (the environment before the function call).

The rest of the table follows closely, and a big part of the second assignment is turning it into actual code, so we’ll leave it to you.
The full table follows at the end of this handout, but before that, there are several helper functions used here that need at least some
explaining.

3.4 Helpers
3.4.1 Retrieve Keys from Map

A simple keys function is used in multiple rules to retrieve the set of keys of a given map. This does exactly what it tells you.

3.4.2 Reverse a List

The reverse function reverses the contents of a list. This is useful for one rule that work with tuples.

3.4.3 Initial State

The initialState helper creates the initial program state, given only the program. The current term is determined by the program
expression, and the environment and continuation stack are both made empty.

3.4.4 Binary Operation Evaluation

The one helper function already used in the handout is evalOp(a,⊕, b), which evaluates a binary arithmetic operation or relation on
two domains. This mainly follows the following constraints:

• a and b have to be of the same domain of value, e.g. both have to be IntV

• the ≤ and < relations can be executed only on IntV and are exactly as expected
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• the logical operations ∨ and ∧ can be executed only on BoolV

• the meaning of the arithmetic operations +,−,× over IntV are integer addition, subtraction, and multiplication

• the meaning of the arithmetic operation ÷ is integer division, for any non-zero b

• the meaning of the operation + over StringV is string concatenation

• any other combination of a,⊕ and b fails by getting stuck

3.4.5 Tuple and Case Lookup

Because tuples and constructors are matchable in different ways, there need to be some functions around that do the lookup for the
appropriate matches. In our case, we give the functions tupleAccess, constructorCaseLookup and tupleCaseLookup for the
appropriate situations.

The tupleAccess helper accesses the nth element of a tuple. As we index tuples with natural numbers (look at the syntax on
page 2), the first index is 1.

The constructorCaseLookup helper gives us a matching case, given a constructor name and a list of cases. In a similar light,
tupleCaseLookup gives us a matching environment and expression (therefore, a case), given a list of values, environment, and a list
of cases to match through.

4 Done!
Okay, phew! You have just been instructed on how to write a high-level language semantics! It may not be the next C++, but rest
assured, this is a big step! Let’s see what we covered in this handout:

• We learned how to write syntax and semantics rules for languages with several different value domains

• We saw that semantics basically wraps around the syntax, adding meaning to it

• We went through a few samples of continuations, which serve the purpose of stopping a computation if we’re not ready for it,
and enabling us to continue with it once we are

• We saw that we can sometimes reuse the same general concept to implement a bunch of different things, like using continuations
to implement both binary operations, function calls and a lot of the other things in our language

We’re getting to the fun bit. You now have a language of the same power as Scala. It’s Turing-complete (prove it to us, we dare
you!), and you can write programs in it and run them through the parser to see the result. It lacks some sophistication, but that’s why
we have assignment 3, and adding a type-checker to the language you just created!

P.S. The table starts out nice and sorted, and then slowly descends into chaos. Don’t implement it without thinking, connect the
dots as you go. Continuations lead one to another!
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# t Premises tnew ρnew
−−→κnew

1 str strV(str) ρ ~κ

2 b boolV(b) ρ ~κ

3 i intV(i) ρ ~κ

4 unit unitV ρ ~κ

5 x x ∈ keys(ρ), v = ρ(x) v ρ ~κ

6 e1 ⊕ e2 e1 ρ binopLeftK(⊕, e2) :: ~κ
7 v ~κ = binopLeftK(⊕, e) :: ~κ2 e ρ binopRightK(v,⊕) :: ~κ2

8 v2 ~κ = binopRightK(v1,⊕) :: ~κ2, v3 ρ ~κ2
v3 = evalOp(v1,⊕, v2)

9 x⇒ e closureV(x, e, ρ) ρ ~κ

10 e1(e2) e1 ρ anonFunLeftK(e2) :: ~κ
11 closureV(x′, e′, ρ′) ~κ = anonFunLeftK(e) :: ~κ2 e ρ anonFunRightK(x′, e′, ρ′) :: ~κ2

12 v ~κ = anonFunRightK(x′, e′, ρ′) :: ~κ2 e′ ρ′[x′ 7→ v] restoreK(ρ) :: ~κ2

13 fn(e) fn ∈ keys(defs) e ρ namedFunK(fn) :: ~κ
14 v ~κ = namedFunK(fn) :: ~κ2, e {}[x 7→ v] restoreK(ρ) :: ~κ2

(x · e) = defs(fn)
15 v ~κ = restoreK(ρ′) :: ~κ2 v ρ′ ~κ2

16 if (e1) e2 else e3 e1 ρ ifK(e2, e3) :: ~κ

17
{
(valx = e1) ::

−→
val e2

}
e1 ρ blockK(x,

−→
val, e2) :: ~κ

18 ( e1 :: ~e2 ) e1 ρ tupleK(~e2, []) :: ~κ
19 e. n e ρ accessK(n) :: ~κ
20 cn(e) e ρ constructorK(cn) :: ~κ
21 e match {−−−→case} e ρ matchK(−−−→case) :: ~κ
22 boolV(true) ~κ = ifK(e1, e2) :: ~κ2 e1 ρ ~κ2

23 boolV(false) ~κ = ifK(e1, e2) :: ~κ2 e2 ρ ~κ2

24 v ~κ = blockK(x1, (val x2 = e1) ::
−→
val, e2) :: ~κ2 e1 ρ[x1 7→ v] blockK(x2,

−→
val, e2) :: restoreK(ρ) :: ~κ2

25 v ~κ = blockK(x, [], e) :: ~κ2 e ρ[x 7→ v] restoreK(ρ) :: ~κ2

26 v1 ~κ = tupleK(e1 :: ~e2, ~v2) :: ~κ2 e1 ρ tupleK(~e2, v1 :: ~v2) :: ~κ2

27 v1 ~κ = tupleK([], ~v2) :: ~κ2, tupleV(~v3) ρ ~κ2
~v3 = reverse(v1 :: ~v2)

28 tupleV(~v1) ~κ = accessK(n) :: ~κ2, v2 ρ ~κ2
v2 = tupleAccess(~v1, n)

29 v ~κ = constructorK(cn) :: ~κ2 constructorV(cn, v) ρ ~κ2

30 constructorV(cn, v) ~κ = matchK(−−−→case) :: ~κ2, e ρ[x 7→ v] restoreK(ρ) :: ~κ2

(x · e) = constructorCaseLookup(cn,−−−→case)
31 tupleV(~v1) ~κ = matchK(−−−→case) :: ~κ2, e ρ′ restoreK(ρ) :: ~κ2

(ρ′ · e) = tupleCaseLookup(~v1, ρ,
−−−→case)

32 v ~κ = [] v ρ ~κ
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