
To explore brave new worlds...

Before we begin...
Welcome back to week whatever it is of the programming languages course! If you’re still reading this, and are confused, here’s what
you forgot:

• Whatever text is written in a regular, black-on-white font is essential and couldn’t be skipped. This is usually something you
should take your time and read through carefully. If it’s bold or italic, doubly so!

• If text appears in a darker grey box with a “Sidenote” caption, it’s usually an interesting sidenote on the topic in question.
These are usually there to tell you things you would come to realize for yourselves at some later point.

• If text appears in a dashed, lighter grey box, with a caption like “Don’t drink too much Kool-aid”, this is usually an example,
counter-example, question or something to spend some time thinking about. We’re interested in your opinions, if you’d give
them.

• Code segments and equations are given in a monospaced font, with explanations usually following or preceding them.

• Anything else is a comment.

1 Overview
Even though you may not feel like it, I assure you that you have written an interpreter for a language very similar to Scala, you’ve
enriched it with a type-system, and now that you can write sensible code in there, you can work on expanding it. We’ve lost some
freedom and got some security with the addition of the type system, and now, let’s see if we can get some of that freedom back, by
going polymorphic!

2 Parametric Polymorphism

For to be free is not merely to cast off one’s chains, but to
live in a way that respects and enhances the freedom of
others.

Nelson Mandela

Parametric polymorphism, which is a mouthful, is also a mechanism for making a language more expressive while maintaining
full static type safety.

Polymorphism (greek, πολυς meaning “many”and μορφη meaning “forms”) is a wide term, generally being really abstract: it
means that some interface can handle multiple types. How this is implemented makes it parametric, ad-hoc or subtype polymorphism.

Sidenote: Ad-hoc polymorphism is what you might know as ”function overloading”, where you define
a function of the same name, but different types, and the resolution of which one is called depends on
the call arguments.
Subtype polymorphism is when we denote different instances by name. This is just the good old
inheritance-based stuff you know from object-oriented classes. This is sometimes referred to as just,
simply, polymorphism in object-oriented circles.

1

Parametric polymorphism is when code is written but instead of mentioning specific types, we leave holes (also known as type
variables) to be filled at some point later. These holes are generic in nature, so the types associated with them are sometimes also
called generic types.

For this to work, we have to, yet again, change our syntax and typing rules to fit. This change, however, is quite small compared
to adding a type-checker, and mostly constitutes of minor additions. This ended being the shortest and most to-the-point handout yet,
as I didn’t want to bog you down with extra stuff. Without further ado...

2.1 Syntax Additions
For starters, let’s introduce type variables into our syntax. There are several moments where we’re going to use them. Let’s call this
T , and the set of all type variables TypeVariable.

T ∈ TypeVariable

As for the syntactic rules, we can have either type variables themselves or user-defined types with type variables. Basically, the only
difference you’ll be seeing is that we’re adding the [−→τ] to everything.

τ ∈ Type ::= string | boolean | integer | unitType | τ1 ⇒ τ2 | (~τ) | un[~τ] | T

In expressions, we can either have named functions or constructors which take type arguments.

e ∈ Exp ::= fn[~τ](e) | cn[~τ](e) | . . .

Both of these are supplemented by ways to actually define them, which we just extend a bit:

def ∈ Def ::= def fn[
−→
T](x : τ1) : τ2 = e

tdef ∈ UserDefinedTypeDef ::= algebraic un[
−→
T] =

−−−→
cdef

Now, it may be weird that in some places, we have a [−→τ] and somewhere [
−→
T]. To understand this, let me give you and example from

Scala:

d e f foo [T] (t : T) = t
. . .
foo [I n t] (5)

The definition of a function requires a type variable, so we use a free type variable T to mark whatever the actual type will be. Once
the time comes to call the function, instead of using a T , we use an actual type, Int in this case, which is in the set of types τ. This is
exactly how SimpleScala will be from now on.

Don’t drink too much Kool-Aid: Okay, not really exactly: Scala can infer the types, so we can basi-
cally just write:

d e f f o o [T] (t : T) = t
. . .
f o o (5)

The type checker is powerful enough to recognize which type-variables come down to what based on
the value (e.g. 5 is an integer). How would you do that in SimpleScala ?

2.2 Type System Additions
Accordingly, we have to extend our type domains with type variables, too. Where we had function definitions map from function
names to tuples of types (argument and return type), now we also include the type variable list present (might be empty!) in the
definition. This is to say that a function that doesn’t need type variables can choose to ignore them, but the reasoning is still
polymorphic!

fdefs ∈ NamedFunctionDefs = FunctionName→ (
−−−−−−−−−−−→
TypeVariable × Type × Type)

2

Similarly, we change type definitions to include type variables.

tdefs ∈ TypeDefs = UserDefinedTypeName→ (
−−−−−−−−−−−→
TypeVariable × (ConstructorName→ Type))

Last but not least, we need to define a scope for type variables, which is a set of type variables currently available to a location in our
program.

tscope ∈ TypeVarsInScope = TypeVariable

2.3 Typing Rules
Now that that’s said and done, let’s take care of the actual changes in the type system. The largest one is this one:

typeOkList(~τ1) fn ∈ keys(fdefs) (
−→
T · τ2 · τ3) = fdefs(fn) |

−→
T | = |~τ1|

τ′2 = typeReplace(
−→
T , ~τ1, τ2) τ′3 = typeReplace(

−→
T , ~τ1, τ3) Γ ` e : τ′2

Γ ` fn[~τ1](e) : τ′3
(nameCall)

If we have a function call, with type arguments ~τ1 and a return type τ′3, check whether the types in ~τ1 are okay (more on that

in the helpers section), and then does the same things as before except that all our definitions now have a richer type, with the
−→
T

passing around. These are the variables, which have to be the same length as our concrete types that we pass in (e.g. if our function
is parametrized by one type variable, we have to supply exactly one concrete type).

The biggest new piece here is the typeReplace helper, which actually does the replacement of type variables with concrete
types. It basically fills the holes which type variables are, by reading from the currently available concrete types (passed in by τ1),
building a map between the type variables in T and those, and then bridging that gap. Here’s an example of how typeReplacewould
work in practice:

typeReplace([A], [int], string) = string

typeReplace([A], [int], A) = int

typeReplace([A], [int], A⇒ (A, string)) = int⇒ (int, string)
typeReplace([A], [B], A⇒ A) = B⇒ B

We do this twice: once to get the type of the argument, and another time to get the return type. If these, in fact, weren’t type variables,
as the first example shows, typeReplace returns the concrete argument.

I sense a question incoming: what do we need τ′2 for? We never use it in the conclusion below the line! Yes, but the typing
of our argument is implicit, as seen in the last (rightmost) part of the premise; e is of type τ′2, which we got from passing the type

definition from (
−→
T · τ2 · τ3) = fdefs(fn) through the type replacement function; it must match up with the expected input type after

type replacement.
Both constructors and matching is literally the same thing, and is left to the readers as an exercise. Here’s a question that might

help you with solving constructor-based rules: what is m? What does it represent? Once you know this, send me a mail with the
explanation and the title ”m is for...” to win a small, but very unique (as in ”there’s literally one of these on this planet”) prize! Now
that that’s done, here’s a quick overview of the helpers used!

2.4 Helpers
These helpers are in three categories: those not mentioned do the exact same thing as before, and we didn’t want to cut wood just
so that you could have a duplicate page. The second category is of the ones that got affected by the changes but didn’t change their
original purpose. The third is of those that are here to fill in the functionality for parametric polymorphism, and are explained in
detail.

3

2.4.1 typeOk

Returns true if the given type is valid. This means the following:

typeOk ∈ Type→ Boolean

typeOk(string) = true

typeOk(boolean) = true

typeOk(integer) = true

typeOk(unitType) = true

typeOk(τ1 ⇒ τ2) =

typeOk(τ1) ∧ typeOk(τ2)
typeOk((~τ)) =

typeOkList(~τ)
typeOk(un[~τ]) =

typeOkList(~τ)
typeOk(T) = T ∈ tscope

As you can see, everything is quite simple: basic types are always available, functions have to be okay for both the input and output
types, tuples and user defined types are also recursively run (using a smaller helper, typeOkList, which just traverses through the
types and repeatedly calls typeOk on the head) and type variables are okay if they are in the current scope.

2.4.2 typeReplace

Performs type replacement of type variables with concrete types. The first parameter is the sequence of type variables in play. The
second parameter is the sequence of concrete types these should map to. The third is the target expression which we will be doing
the replacements in.

If this target is a concrete type, the result is that same type. If not, there are several options:

• the target is a type variable: in this case, replace it if it has a mapping in the map made from the first and second argument

• the target is a function type τ1 ⇒ τ2: recurse into both τ1 and τ2, return with their more concrete forms τ′1 and τ′2, and return a
function type τ′1 ⇒ τ′2

• the target is a tuple type −→τ1, run through it recursively, returning with the more concrete form for every element of the tuple,
which will constitute the resulting type

• the target is a user-defined type un[−→τ1], behave the same as you did with the tuple case, but wrap the result in the un type before
returning

Formally, it uses three functions to help itself. The makeMap function, which hasn’t been shown before (because it’s used only
internally) creates a map out of two lists. typeReplace then does the following:

typeReplace ∈
−−−−−−−−−−−→
TypeVariable ×

−−−→
Type × Type→ Type

typeReplace(
−→
T , ~τ1, τ2) =

typeReplaceHelper(makeMap(
−→
T , ~τ1), τ2)

4

The typeReplaceHelper function is used to actually traverse the types:

typeReplaceHelper ∈ (TypeVariable→ Type) × Type→ Type

typeReplaceHelper(m, string) = string

typeReplaceHelper(m, boolean) = boolean

typeReplaceHelper(m, integer) = integer

typeReplaceHelper(m, unitType) = unitType

typeReplaceHelper(m, τ1 ⇒ τ2) =

let τ′1 = typeReplaceHelper(m, τ1)
let τ′2 = typeReplaceHelper(m, τ2)
τ′1 ⇒ τ′2

typeReplaceHelper(m, (~τ1)) =

let ~τ2 = typeReplaceHelperList(m, ~τ1)
(~τ2)

typeReplaceHelper(m, un[~τ1]) =

let ~τ2 = typeReplaceHelperList(m, ~τ1)
un[~τ2]

typeReplaceHelper(m,T) = m(T)

When we deal with lists, typeReplaceHelperList is used to map over them. This effectively just performs Scala’s map method,
but in a way that is specific to type replacement.

typeReplaceHelperList ∈ (TypeVariable→ Type) ×
−−−→
Type→

−−−→
Type

typeReplaceHelperList(m, []) = []
typeReplaceHelperList(m, τ1 :: ~τ2) =

let τ′1 = typeReplaceHelper(m, τ1)
let ~τ2

′
= typeReplaceHelperList(m, ~τ2)

τ′1 :: ~τ2
′

2.4.3 Small changes due to adding polymorphism

The functions which experienced some changes due to polymorphic typing alone, are casesSane and casesTypes.
In the case of casesSane, it’s because it works with the tdefs structure, which now also holds the type variable list in it. This,

however, doesn’t affect much else.
As for casesTypes, which gets the type of each case in the list of cases, we now have to account for all the type replacements

and type variables in the cases, and as such, this function changed somewhat to take that into account. This change, however, is
barely visible to you, as you’re just passing one more argument, which represents this list of type variables.

5

3 Done!

– Conan, what is best in life?

— Mongol General, to Conan, during dinner

Okay! Long one! It’s 3:00 in the morning, and this chill lo fi playlist I’m on just gave me the chills by quoting a very profound
thought Alan Watts wrote. Do ask all the questions you have, don’t hold back.

Remember that you will surely pass this course, that’s not the question. The question is how much you will learn and keep with
you, now, for later, for circumstances unknown and problems yet unseen. Careful exploration of the unknown, guided and safe, is,
after all, the best in life! If you disagree, write to us and explain what IS best in life.

– That is good! That is good!

— Mongol General, to Conan, after hearing his response

6

4 Poly-Typed SimpleScala

4.1 Syntax

x ∈ Variable str ∈ String b ∈ Boolean i ∈ Z n ∈ N

fn ∈ FunctionName cn ∈ ConstructorName un ∈ UserDefinedTypeName

T ∈ TypeVariable

τ ∈ Type ::= string | boolean | integer | unitType | τ1 ⇒ τ2 | (~τ) | un[~τ] | T
e ∈ Exp ::= x | str | b | i | unit | e1 ⊕ e2

| (x : τ)⇒ e | e1(e2) | fn[~τ](e)
| if (e1) e2 else e3

| {
−→
val e}

| (~e) | e. n

| cn[~τ](e) | e match {−−−→case}

val ∈ Val ::= val x = e

case ∈ Case ::= case cn(x)⇒ e | case (~x)⇒ e

⊕ ∈ Binop ::= + | − | × | ÷ | ∧ | ∨ | < | ≤

tdef ∈ UserDefinedTypeDef ::= algebraic un[
−→
T] =

−−−→
cdef

cdef ∈ ConstructorDefinition ::= cn(τ)

def ∈ Def ::= def fn[
−→
T](x : τ1) : τ2 = e

prog ∈ Program ::=
−−→
tdef
−−→
def e

7

4.2 Type System
4.2.1 Type Domains

fdefs ∈ NamedFunctionDefs = FunctionName→ (
−−−−−−−−−−−→
TypeVariable × Type × Type)

tdefs ∈ TypeDefs = UserDefinedTypeName→ (
−−−−−−−−−−−→
TypeVariable × (ConstructorName→ Type))

cdefs ∈ ConstructorDefs = ConstructorName→ UserDefinedTypeName

tscope ∈ TypeVarsInScope = TypeVariable

Γ ∈ TypeEnv = Variable→ Type

4.2.2 Type Rules

x ∈ keys(Γ) τ = Γ(x)
Γ ` x : τ

(var)
Γ ` str : string

(string)
Γ ` b : boolean

(boolean)

Γ ` i : integer
(Z)

Γ ` unit : unitType
(unit)

Γ ` e1 : integer Γ ` e2 : integer
Γ ` e1 + e2 : integer

(+int)

Γ ` e1 : string Γ ` e2 : string
Γ ` e1 + e2 : string

(+string)
⊗ ∈ {−,×,÷} Γ ` e1 : integer Γ ` e2 : integer

Γ ` e1 ⊗ e2 : integer
(arithOp)

⊗ ∈ {∧,∨} Γ ` e1 : boolean Γ ` e2 : boolean
Γ ` e1 ⊗ e2 : boolean

(boolOp)
⊗ ∈ {<,≤} Γ ` e1 : integer Γ ` e2 : integer

Γ ` e1 ⊗ e2 : boolean
(relOp)

typeOk(τ1) Γ[x 7→ τ1] ` e : τ2

Γ ` (x : τ1)⇒ e : τ1 ⇒ τ2
(anonFun)

Γ ` e1 : τ1 ⇒ τ2 Γ ` e2 : τ1

Γ ` e1(e2) : τ2
(anonCall)

typeOkList(~τ1) fn ∈ keys(fdefs) (
−→
T · τ2 · τ3) = fdefs(fn) |

−→
T | = |~τ1|

τ′2 = typeReplace(
−→
T , ~τ1, τ2) τ′3 = typeReplace(

−→
T , ~τ1, τ3) Γ ` e : τ′2

Γ ` fn[~τ1](e) : τ′3
(nameCall)

Γ ` e1 : boolean Γ ` e2 : τ Γ ` e3 : τ
Γ ` if (e1) e2 else e3 : τ

(if)
Γ′ = blockGamma(

−→
val,Γ) Γ′ ` e : τ

Γ ` {
−→
val e} : τ

(block)

~τ = tupleTypes(~e,Γ)
Γ ` (~e) : (~τ)

(tup) Γ ` e : (~τ) τ′ = tupleAccess(~τ, n)
Γ ` e. n : τ′

(acc)

typeOkList(~τ1) cn ∈ keys(cdefs) un = cdefs(cn) (
−→
T · m) = tdefs(un)

|
−→
T | = |~τ1| τ2 = m(cn) τ′2 = typeReplace(

−→
T , ~τ1, τ2) Γ ` e : τ′2

Γ ` cn[~τ1](e) : un[~τ1]
(constructor)

Γ ` e1 : (~τ1) |~τ1| = |~x|
Γ′ = tupGamma(~x, ~τ1,Γ) Γ′ ` e2 : τ2

Γ ` e1 match {(case (~x)⇒ e2) :: []} : τ2
(match-tup)

Γ ` e : un[~τ1] un ∈ keys(tdefs) casesSane(−−−→case, un) (
−→
T · m) = tdefs(un)

|
−→
T | = |~τ1| ~τ2 = casesTypes(−−−→case,Γ,

−→
T , ~τ1,m) τ3 = asSingleton(~τ2)

Γ ` e match {−−−→case} : τ3
(match-constructor)

8

	Overview
	Parametric Polymorphism
	Syntax Additions
	Type System Additions
	Typing Rules
	Helpers
	typeOk
	typeReplace
	Small changes due to adding polymorphism

	Done!
	Poly-Typed SimpleScala
	Syntax
	Type System
	Type Domains
	Type Rules

