
Comonads



Monads are popular.



Monads are not special.



Category theory redux

Categories

A collection C  of objects connected with arrows, such that:

∀object X ∈ Obj(C) . id = X → X ∈ Arr(C)

∀objects X,Y ,Z ∈ Obj(C) . 
f = X → Y ∈ Arr(C) ∧
g = Y → Z ∈ Arr(C) 

⇒ f ∘ g = X → Z ∈ Arr(C)

X



Category theory redux

Objects

The only evidence we have for the existence of any object X  is the
arrow id = X → X . The inequality of two id arrows is what
distinguishes two objects. Otherwise, the objects have no content
or properties.

X



Category theory redux

Arrows (Morphisms)

Defined by their source and target. They define the semantics of a
category.



Category theory redux

Functors

Structure-preserving mappings between categories. They map
objects to objects, and morphisms between two objects to
morphisms between their respective corresponding objects.



Category theory redux

Functors

Structure-preserving mappings between categories. They map
objects to objects, and morphisms between two objects to
morphisms between their respective corresponding objects.



Category theory redux

Duals

Flipping all arrows sometimes yields great results.



Useful Functorial Structures
map, covariant functor: 

(A⇒ B) ⇒ (F [A] ⇒ F [B]) 
contramap, contravariant functor: 

(B ⇒ A) ⇒ (F [A] ⇒ F [B]) 
apply, applicative: 

F [A⇒ B] ⇒ (F [A] ⇒ F [B]) 
flatMap, monad: 

(A⇒ F [B]) ⇒ (F [A] ⇒ F [B]) 
coflatMap, comonad: 

(F [A] ⇒ B) ⇒ (F [A] ⇒ F [B])



Monad
trait Monad[F[_]] extends Functor[F] { 
  // aka return 
  def wrap[A]: A => F[A] 
 
  // aka join 
  def flatten[A]: F[F[A]] => F[A] 
 
  // aka bind 
  def flatMap[A, B]: (A => F[B]) => (F[A] => F[B]) 
} 



Comonad
trait Comonad[F[_]] extends Functor[F] { 
  // aka coreturn 
  def extract[A]: F[A] => A 
 
  // aka cojoin 
  def duplicate[A]: F[A] => F[F[A]] 
   
  // aka cobind, coflatMap 
  def extend[A, B]: (F[A] => B) => F[A] => F[B] 
} 



Comonad
Comonadic laws

extend extract = id 
extract . extend f = f 
extend f . extend g = extend (f . extend g) 



Reasoning
Monads: effectful computations required to produce values

Comonads: contextual computations required to consume values



Uses for Comonads
Annotated structures

"Pointed" structures

Functional Reactive Programming, Signal Processing



Uses for Comonads
Annotated structures: F[A] => B  interpreted as creating
annotations of type B  given a value of type F[A]  ( F  is a functor,
so fmap  guarantees that the annotated structure will keep the
same structure)



Uses for Comonads
Annotated structures

A non-empty tree.

case class Tree[A](tip: A, sub: List[Tree[A]]) 



Uses for Comonads
Annotated structures

A tree of all subtrees.

def duplicate: Tree[Tree[A]] = 
    Tree(this, sub.map(_.duplicate)) 



Uses for Comonads
Annotated structures

A tree of all subtrees that we can map over!

def duplicate: Tree[Tree[A]] = 
    Tree(this, sub.map(_.duplicate)) 
 
duplicate(tree).map(f)  
// is equivalent to 
extend(tree)(f) 

f  takes a tree and performs some computation that required that
tree's information (including not only its value but also its subtree)



Uses for Comonads
Annotated structures

A tree of all subtrees that we can map over!

def duplicate: Tree[Tree[A]] = 
    Tree(this, sub.map(_.duplicate)) 
 
duplicate(tree).map(f)  
// is equivalent to 
extend(tree)(f) 

The result is a new tree mirroring tree , except that each node
has f  applied over the corresponding subtree (annotating it).



Uses for Comonads
Annotated structures

A tree of all subtrees that we can map over!

// alias extend with =>> 
 
exprTree =>> annotateTypes 

The result is a new tree mirroring exprTree , except that each
node has annotateTypes  applied over the corresponding subtree.



Uses for Comonads
"Pointed" structures: Duplicate can be understood as pointing at
the input F[A]  and giving us all "neighboring" substructures.

def duplicate[A]: F[A] => F[F[A]] 



Uses for Comonads
"Pointed" structures

Zipper-like structures, traversers, iterators...

case class Zip[A] 
      (pre: List[A], now: A, post: List[A]) 



Uses for Comonads
"Pointed" structures

Zipper-like structures, traversers, iterators...

Zip([ -2, -3, ...], -1, [ 0, 1, ... ]) 



Uses for Comonads
"Pointed" structures

Zipper-like structures, traversers, iterators...

// helper function 
def iterate[A](app: A => A, start: A): List[A] = 
    start :: iterate(app, app(start)) 
 
def fmap[B](f: A => B): Zip[B] =  
  Zip[B](pre.map(f), f(now), post.map(f)) 
 
def duplicate = 
  Zip( 
    iterate(shiftLeft _, this).tail, this, 
    iterate(shiftRight _, this).tail) 



Uses for Comonads
"Pointed" structures

Zipper-like structures, traversers, iterators...

// these are trivial 
 
def extract: A = now 
 
def extend[B](f: Zip[A] => B): Zip[B] =  
  coflatten.fmap(f) 



Uses for Comonads
"Pointed" structures

Cellular automata-like rule applications by extend ing over every
point and getting its neighborhood from duplicate .

def rule(cell: Zip[Boolean]): Boolean = cell match { 
  case Zip(a :: _, b, c :: _) => 
    !(a && b && !c || (a == c)) 
} 
   



Uses for Comonads
"Pointed" structures

Simple example of usage, in an image libraries (remember CS162?
Look at this).

def blur(pixel: Pixel[Double]) = { 
  val focus = pixel.get 
  val before = pixel.shift(pixel.index - 1) 
  val after = pixel.shift(pixel.index + 1) 
  0.25 * before + 0.5 focus + 0.25 * after 
} 
 
def scale(pixel: Pixel[Double]) = 
  pixel.get * 2 

https://jaspervdj.be/posts/2014-11-27-comonads-image-processing.html


Uses for Comonads
"Pointed" structures

Useful for image libraries (remember CS162? Look at this).

// We write functions that only "think" locally,  
// in their environment 
def blur(pixel: Pixel[Double]) = { 
  val focus = pixel.get 
  val before = pixel.shiftLeft.get 
  val after = pixel.shiftRight.get 
  0.25 * before + 0.5 focus + 0.25 * after 
} 
 
def scale(n: Double)(pixel: Pixel[Double]) = 
  pixel.get * n 
   
val image = Pixels.fromSeq(1, 1, 1, 1, 1, 0, 0, 0, 0) 
val result = image =>> blur =>> scale(0.5) 

https://jaspervdj.be/posts/2014-11-27-comonads-image-processing.html


Uses for Comonads
"Pointed" structures

Useful for image libraries (remember CS162? Look at this).

Possibly useful for shader languages which do pipelining!

https://jaspervdj.be/posts/2014-11-27-comonads-image-processing.html


Uses for Comonads
Functional Reactive Programming, Signal Processing: Both of
these use streams, and streams are inherently comonadic.



Uses for Comonads
Modelling OO programming: objects (collections of fields and
member functions) can be built from scratch using three comonads
( Traced + Stream + Store = Command Pattern ).



How do we get comonads for cofree?
We can generalize the comonadic structure by taking a functor (any
functor) and putting it into the Cofree  comonad (it's a comonad
cogenerator!).

case class Cofree[F[_], A] 
  (counit: A, sub: F[Cofree[F,A]]) { 
 
  def duplicate(implicit F: Functor[F]):  
    Cofree[F,Cofree[F,A]] = 
     
      Cofree(this, F.map(sub)(_.duplicate)) 
   
  def extract = counit 
} 



In Practice
With (functional) languages being more used to working with
monads, sampling code from libraries shows that monads are used
for external interfaces, while many internal contracts are based on
chained comonads.



In Practice
Both Dan Piponi and Edward Kmett say to never compose
comonads over monads, as they end up being very unoptimized.
Composing the other way around seems to be the natural solution
for languages we have now (monads out, comonads inside).



In Type Systems
Monads represent side-effects, and can be added to the type
system as effects. These effects are requirements to get to the
output.

print : string → unit & { io }

Comonads represent context, and can be added to the type
system as coeffects. These effects are requirements on the input
to even start the computation.

stopwatch : unit @ { clock } → int



Coestions



Cothank you


