
DySy: Dynamic Symbolic
Execu�on for Invariant Inference

Christoph Csallner, Nikolai Tillmann, Yannis Smaragdakis

Dynamic Invariant Inference
DySy: an algorithm and tool for invariant inference
using symbolic execution

Likely program invariants
= concrete execution of actual test cases
+ simultaneous symbolic execution over tests

2

Dynamic Invariant Inference
Drastically increases the relevance of inferred
invariants or reduces the size of the test suite
required for good results

Succintly summarizes both expected program inputs
and the subset of program behaviours normal under
those inputs

3

Mo�va�on
An invariant inference system observes program
properties that hold at pre-selected program points,
with the help of a test suite for application
functionality.

method preconditions/postconditions

object state

4

Mo�va�on
int testme(int x, int y) {
 int prod = x * y;
 if (prod < 0)
 throw new ArgumentException();

 if (x < y) {
 int tmp = x;
 x = y; y = tmp;
 }

 int sqry = y * y;
 return prod * prod - sqry * sqry;
}

5

Mo�va�on
Symbolic execution observes that:

if x*y >= 0 , then prod = x*y

the x < y condition is also accumulated

the expression y*y*x*x - x*x*x*x is returned

6

Mo�va�on
Collected over multiple test cases, we get:

precondition x * y >= 0

a fully collected postcondition

\result == ((
 (x < y) -> y*y*x*x - x*x*x*x)
 else -> (x*x*y*y - y*y*y*y))

7

Mo�va�on
An invariant inference system observes program
properties that hold at pre-selected program points,
with the help of a test suite for application
functionality

method preconditions/postconditions

object state

These invariants do not reflect only the behaviour
of the program, but also the assump�ons and
expecta�ons of the test suite.

8

Daikon
(Michael D. Ernst et al, 2007)

Dynamic invariant inference via pre-set collection of
invariant templates

Instantiated to produce candidate invariants under
examination

Expansion of template library is possible, but the
instantiation grows combinatorically

9

Daikon
(Michael D. Ernst et al, 2007)

Instruments the program

Executes it (production use or regular testing)

Analyzes the produced execution traces

At every method entry/exit, instantiates all invariant
templates and tries them out

Summarizes behaviour observed in the traces as
invariant and generalizes to other cases

10

Contribu�ons
DySy, a tool built on top of the Pex Framework for
instrumentation and symbolic execution of .NET
programs.

an algorithm for dynamic invariant inference that
can infer deep invariants (e.g. method purity)

evaluation on Daikon's showcases, inferring a
subset of the interesting invariants found with
Daikon, while eliminating multiple irrelevant or
accidental ones

11

Inference via Path Condi�ons
Path condi�on:

the result of symbolic execution

collection of branch conditions for the whole
program

always expressed in terms of program inputs

12

Inference via Path Condi�ons
Re�ne symbolic execution by executing tests.

At the end of tests, the overall path condition is the
precondi�on of the program under test

Symbolic values of externally observable variables
provide dynamically inferred postcondi�ons

Symbolic conditions for all methods of a class
become the class state invariants

13

This technique is not...
lifting conditions from program text and
postulating them as invariants

has conditions which do not exist in the
program as the result of abstraction via
symbolic execution over tests

invariant inference through static techniques
(abstract interpretation, symbolic execution)

missing dynamic nature

concolic execution

14

DySy Overview
For a method under examination, all class instance
variables, the method’s parameters, and the
method’s result are treated as symbolic variables

Path conditions in symbolic execution are
determined purely by the paths taken in the concrete
execution.

15

DySy Overview
When executing a single test case:

the path condition at the end of the symbolic
execution is the symbolic condition for the path of
the program, and thus is a precondi�on for that
execution

the symbolic values of the method's result and
spawned object instance variables are the
postcondi�on for that method

The combined conditions over all test cases are
simpli�ed through symbolic reasoning. 16

DySy Overview
Combining preconditions is done by disjunction of
the individual test case preconditions.

Combining postconditions is done by conjunction of
the individual test case postconditions.

The number of disjuncts is bounded by the number of
program paths under examination.

Symbolic reasoning (eg. theorem prover) is needed to
simplify terms into tautologies.

17

DySy Under the Hood
Pex: dynamic analysis and test generation
framework for .NET

Monitors execution of program through
instrumentation.

Every actual execution gets a dedicated "shadow
interpreter", and every actual instruction callbacks
to this shadow interpreter to follow symbolically.

18

DySy Under the Hood
If a method makes no state updates except local
variables of new stackframes and instance �elds of
newly created objects, it is considered pure.

All pure methods are abstracted into terms
representing the call.

All recursive calls are abstracted away independent
of their purity (like a normal form).

Native calls are not monitored.

19

DySy Under the Hood
Special treatment for explicit loop behaviour:

loop iteration variables are treated as symbolic

loop exit condition does not become part of the
path condition if the loop body is entered at all

effectively: a loop becomes an if statement with
the symbolic conditions in the body of the loop
collapsed per program-point

20

Evalua�on
DySy much slower than Daikon (28s vs 9s)

To detect an approximately equal number of ideal
invariants (27), Daikon created 138 intermediate
invariants

Daikon created three times more unique
subexpressions (a relevant metric for measuring the
actual throughput in invariants) than DySy for the
same number of ideal invariants

21

Evalua�on
Daikon sometimes creates really weird invariants
which DySy doesn't do.

Relating the type of the array with the types of
elements it holds:

\old(this.topOfStack) >= 0) ==>
 (this.array.getClass() != \result.getClass())

22

Evalua�on
Daikon sometimes creates really weird invariants
which DySy doesn't do.

Relating the topOfStack variable with the stack's
default capacity using a bit-shift operation (?!):

\old(this.topOfStack) >= 0) ==>
 ((\old(this.topOfStack) >> stack.DEFAULT_CAPACITY == 0))

23

Conclusion
“ “ In this paper we presented an approach

that holds promise for the future of
dynamic invariant inference:
using symbolic execution, simultaneously
with concrete test execution in order to
obtain conditions for invariants.
We believe that this technique
represents the future of dynamic
invariant inference.

“
“ “ “

24

