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Papers

Three papers referenced:

1. “Memory Safety Without Runtime Checks or Garbage
Collection” by Dhurjati et al. 2003

2. “Memory Safety Without Garbage Collection for Embedded
Applications” by Dhurjati et al. 2005

3. “Automatic Pool Allocation: Improving Performance by
Controlling Data Structure Layout in the Heap” by Lattner and
Adve 2005
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Problem

• Many systems rely on GC and runtime checks before
individual memory operations to ensure memory safety

• Embedded systems have energy, memory, and power
limitations precluding the use of a high-overhead runtime

• SafeC, CCured, and Vault have between 20% to 300%
slowdown

• Need (mostly) static techniques to ensure safety of
dynamically allocated memory
• Require no additional programmer annotations
• Not overly restrict semantics of language (e.g. C)

2



Problem

• Many systems rely on GC and runtime checks before
individual memory operations to ensure memory safety

• Embedded systems have energy, memory, and power
limitations precluding the use of a high-overhead runtime

• SafeC, CCured, and Vault have between 20% to 300%
slowdown

• Need (mostly) static techniques to ensure safety of
dynamically allocated memory
• Require no additional programmer annotations
• Not overly restrict semantics of language (e.g. C)

2



Problem

• Many systems rely on GC and runtime checks before
individual memory operations to ensure memory safety

• Embedded systems have energy, memory, and power
limitations precluding the use of a high-overhead runtime

• SafeC, CCured, and Vault have between 20% to 300%
slowdown

• Need (mostly) static techniques to ensure safety of
dynamically allocated memory
• Require no additional programmer annotations
• Not overly restrict semantics of language (e.g. C)

2



Problem

• Many systems rely on GC and runtime checks before
individual memory operations to ensure memory safety

• Embedded systems have energy, memory, and power
limitations precluding the use of a high-overhead runtime

• SafeC, CCured, and Vault have between 20% to 300%
slowdown

• Need (mostly) static techniques to ensure safety of
dynamically allocated memory
• Require no additional programmer annotations
• Not overly restrict semantics of language (e.g. C)

2



Solution

• Improve on Control-C and Automatic Pool Allocation for safety

• A program is memory safe if
• It never references a memory location outside address space

allocated for or by it
• It never executes instructions outside code area created by the

compiler within that space

• Control-C
• “Strongly-typed” (see next slide)
• Affine relationships between array’s size and address used to

index into it
• Dynamic memory allocation via single region at a time
• Goal: 100% static checking using existing compiler techniques
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Assumptions

• Some runtime errors are safe (e.g. growing stack beyond
available space, attempted access to kernel memory)

• Strong typing

• No pointer-to-pointer casts

• Unions must be castable to each other

• Initialization of local pointers before dereference

• Individual data types no larger than size of reserved address
space

• Cannot store address of stack location in heap-allocated
object, global variable, or function return value
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Behaviors

They show that the following behaviors are mitigated:

Unitialized pointers

• Dataflow analysis to ensure automatic (i.e. stack-allocated)
scalar pointers are initialized

• All unitialized global scalar pointers point to base of reserved
address space (thus can trigger safe runtime error)

Stack safety

• To prevent accessibility of address of local variables after
function return

• Traverse Data Structure Graph, computed via Data Structure
Analysis

• Check for reachable stack-allocated objects from function
pointer arguments, globals, and return values
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Data Structure Analysis

• Computes a data structure graph (points-to graph) for
memory objects, identifying disjoint instances

• Separate graph computed for each function

• All functions within a strongly-connected component share a
single graph

• Different nodes in the graph represent different objects
• Context sensitive (uses full acyclic call paths)

• allows analysis to distinguish heap objects processed by
common functions

• enables automatic pool allocation to put distinct instances of
same logical data structure into distinct pools

• Field sensitive (distinguishes pointer fields in structures)

• Flow insensitive (order not taken into account)
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Data Structure Graphs
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Behaviors (continued)

Heap safety (dangling pointers)

• Problem: pointers to freed memory used to access objects of
different types later on

• Solution: type homogeneity principle

• “If a freed memory block holding a single object were to be
allocated to another object of the same type and alignment,
then dereferencing dangling pointers to the previous object
cannot cause a type violation”

• Don’t prevent dangling pointers, just make safe, via Automatic
Pool Allocation
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Automatic Pool Allocation Transformation

Overview: create a separate pool for each logical data structure
instance on heap (e.g. a particular linked list or graph)

Specifics

1. Identify data structure instances (maximally connected
subgraphs containing only heap nodes) in DSG

2. Identify and allocate pools for structures local to procedures

3. Transform function interfaces to include pool pointers as
arguments as necessary
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Heap Safety from APA

• Pools are type homogeneous

• Need to ensure memory within some pool P1 is not used for
any other data (i.e. another pool P2 or trusted library heap
allocations) until P1 is destroyed

• Modify run-time so pool memory not released to heap until
pooldestroy

• Dangling pointers will always reference

• original object
• new object of same type and alignment, in same pool
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Pool Example
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Memory Consumption

• The change to pool allocation run-time library prevents reuse
of memory between two simultaneously live pools

• Better than naïve approach (pools for each static type)
because these pools are more short-lived

Three categories of pool use behavior; classification algorithm
notifies programmer of case 3 (possible increase in memory
usage)
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Arrays

Problem: compiler must prove that index expressions in array
references lie within array’s bounds on all execution paths

• Limited by fundamental limits of symbolic integer expressions

• Generate Presburger arithmetic constraints
(+,−, ∗C ,∧,∨,∃,∀)

• Set of language rules for arrays (positive array sizes, affine
relationships with index variables, etc.)

• Set of trusted library functions with parameter constraints,
preconditions that are added to constraint set

• Relevant unconstrained variables cause array access to be
marked unsafe

• Add array bound violations to set of generated constraints,
use Omega library to check satisfiability

• Array access is safe if system is unsatisfiable
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Example Array Constraints

The set of constraints generated are:
(A.size = 50 && len <= A.size && k <= 50
&& i < len && k > 0 && i >= 0).
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Evaluation

• Implemented compiler in LLVM

• Test programs from MiBench (13) and MediaBench (4), 3
others

• Porting effort: few changes to conform with type and array
safety (120 out of 42,000 lines)

• Heap and pointer safety effectiveness: all 20 have
provably-enforced safety
• 17 programs have no increase in memory consumption
• 3 increased because of cross-reuse by other pools (1% - 40%

increase)

• Array access checks: difficulties because of non-affine bit
operations on index variables, understanding the size of array
stored on heap

15



Evaluation (continued)
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