Parsing with Derivatives

Cole Margerum and Isaac Zinman

Overview

- Paper by Matthew Might, David Darais, Daniel Spiewak
- Presented at ICFP, 2011

Background: Definition of Formal Languages

- Atomic languages:
- $\emptyset=\{ \}$
- $\varepsilon=\{\varepsilon\}$
- $c \in A=\{c\}$, over some alphabet A
- Regular languages: Atomic languages combined with union, concatenation, Kleene star
- Context-free languages: Regular with mutual recursion

Brzozowski Derivative - Regular Expressions

Definition:

- $\mathrm{D}_{\mathrm{c}}(\mathrm{L})=\{\mathrm{w}: \mathrm{cw} \in \mathrm{L}\}$

Examples:

- $\mathrm{D}_{\mathrm{b}}\{\mathrm{foo}, \mathrm{bar}, \mathrm{baz}\}=\{\mathrm{ar}, \mathrm{az}\}$
- $\mathrm{D}_{\mathrm{f}}\{\mathrm{foo}, \mathrm{bar}, \mathrm{baz}\}=\{\mathrm{oo}\}$
- $\mathrm{D}_{\mathrm{a}}\{f \mathrm{foo}, \mathrm{bar}, \mathrm{baz}\}=\emptyset$

Membership with the Derivative

- $c w \in L$ iff $w \in D_{c}(L)$
- Repeat with every character using the previous derivative
- Check if resultant language contains the empty string: if so, the original string is part of L

Derivatives on the Atomic Languages

- $D_{c}(\emptyset)=\emptyset$
- $D_{c}(\epsilon)=\emptyset$
- $D_{c}(c)=\epsilon$
- $D_{c}\left(c^{\prime}\right)=\emptyset$ if $c \neq c^{\prime}$

Closures

$$
\begin{aligned}
D_{\mathrm{f}}\{\mathrm{foo}, \mathrm{bar}\}^{\star} & =\{\circ \circ\} \circ\{\mathrm{foo}, \mathrm{bar}\}^{\star} \\
D_{\mathrm{f}}\{\mathrm{foo}, \mathrm{bar}\}^{\star} \circ\{\mathrm{frak}\} & =\{\circ \circ\} \circ\{\mathrm{foo}, \mathrm{bar}\}^{\star} \circ\{\mathrm{frak}\} \cup\{\mathrm{rak}\}
\end{aligned}
$$

Union

- $\mathrm{D}_{c}\left(\mathrm{~L}_{1} \cup \mathrm{~L}_{2}\right)=\mathrm{D}_{\mathrm{c}}\left(\mathrm{L}_{1}\right) \cup \mathrm{D}_{c}\left(\mathrm{~L}_{2}\right)$

Kleene Star

- $\mathrm{D}_{\mathrm{c}}\left(\mathrm{L}^{*}\right)=\mathrm{D}_{\mathrm{c}}(\mathrm{L}){ }^{\circ} \mathrm{L}^{*}$

Concatenation

- $D_{c}\left(L_{1} \circ L_{2}\right)=D_{c}\left(L_{1}\right) \circ L_{2}$, if $\epsilon \notin L_{1}$
- $D_{c}\left(L_{1} \circ L_{2}\right)=\left(D_{c}\left(L_{1}\right) \circ L_{2}\right) \cup D_{c}\left(L_{2}\right)$, if $\epsilon \in L_{1}$

Simplification of Concatenation

Nullability Function

- $\delta(\mathrm{L})=\emptyset$, if $\epsilon \notin \mathrm{L}$
- $\delta(\mathrm{L})=\epsilon$, if $\epsilon \in \mathrm{L}$

Revised Concatenation:

- $D_{c}\left(L_{1} \circ L_{2}\right)=\left(D_{c}\left(L_{1}\right) \circ L_{2}\right) \cup\left(\delta\left(L_{1}\right) \circ D_{c}\left(L_{2}\right)\right)$

Nullability

- $\delta(\emptyset)=\emptyset$
- $\delta(\epsilon)=\epsilon$
- $\delta(\mathrm{c})=\emptyset$
- $\delta\left(\mathrm{L}_{1} \cup \mathrm{~L}_{2}\right)=\delta\left(\mathrm{L}_{1}\right) \cup \delta\left(\mathrm{L}_{2}\right)$
- $\delta\left(\mathrm{L}_{1} \circ \mathrm{~L}_{2}\right)=\delta\left(\mathrm{L}_{1}\right) \circ \delta\left(\mathrm{L}_{2}\right)$
- $\delta\left(\mathrm{L}^{*}\right)=\epsilon$

Derivatives of Context-Free Languages

- Derivative code for RL doesn't work with CFG's
- Recursive implementation of the derivative and the recursive nature of CFG's leads to non-termination

Example:
$\mathrm{L}=\mathrm{L} \circ\{\mathrm{x}\} \cup \epsilon$
$D_{\mathrm{x}} \mathrm{L}=\mathrm{D}_{\mathrm{x}} \mathrm{L} \circ\{\mathrm{x}\} \cup \epsilon$

Solutions to Non-Termination

- Laziness
- Concatenation, Union, and Repetition done by need-only
- Memoization
- Use derivatives of languages already seen
- Least Fixed Points
- Expand only as much as necessary...?

Least Fixed Points

If we allow mutually recursive definitions, then the set of describable languages is exactly the set of context-free languages. (Even without Kleene star, the resulting set of languages is contextfree.) We assume, of course, a least-fixed-point interpretation of such recursive structure. For instance, given the language L :

$$
L=(\{\mathrm{x}\} \circ L) \cup \epsilon .
$$

The least-fixed-point interpretation of L is a set containing a finite string of every length (plus the null string). Every string contains only the character x . [The greatest-fixed-point interpretation of L adds an infinite string of x 's.]

From Recognition to Parsing

- Partial parser:
- $\mathbb{P}(\mathrm{A}, \mathrm{T}) \subseteq \mathrm{A}^{*} \rightarrow \mathscr{P}\left(\mathrm{~T} \times \mathrm{A}^{*}\right)$ for alphabet A , parse tree T
- Full parser:
- $\operatorname{LP}\lrcorner(\mathrm{A}, \mathrm{T}) \subseteq \mathrm{A}^{*} \rightarrow \mathscr{P}(\mathrm{~T})$
- Atomic languages easily translate to parsers
- Single character -> partial parser for exactly itself
- Empty set -> reject-everything
- Empty string -> consume-nothing, accept-everything

Parser Combinators

Union: $\begin{aligned} & \text { The union of two parsers, } p, q \in \mathbb{P}(A, X), \\ & \text { trees together, so that } p \cup q \in \mathbb{P}(A, X) \text { : }\end{aligned}$

$$
p \cup q=\lambda w \cdot p(w) \cup q(w)
$$

The concatenation of two parsers, $p \in \mathbb{P}(A, X)$ and $q \in$
Concatenation: $\mathbb{Q}(A, Y)$, produces a parser that pairs the parse trees of the individual parsers together, so that $p \circ q \in \mathbb{P}(A, X \times Y)$:

$$
p \circ q=\lambda w \cdot\left\{\left((x, y), w^{\prime \prime}\right):\left(x, w^{\prime}\right) \in p(w),\left(y, w^{\prime \prime}\right) \in q\left(w^{\prime}\right)\right\}
$$

Function reduction: A reduction by function $f: X \rightarrow Y$ over a parser $p \in \mathbb{P}(A, X)$ creates a new partial parser, $p \rightarrow f \in \mathbb{P}(A, Y)$:

$$
p \rightarrow f=\lambda w \cdot\left\{\left(\left(f(x), w^{\prime}\right):\left(x, w^{\prime}\right) \in p(w)\right\}\right.
$$

Parser Combinators

Nullability:

A special nullability combinator, δ, simplifies the definition of the derivative over parsers. It becomes a reject-everything parser if the language cannot parse empty, and the null parser if it can:

$$
\delta(p)=\lambda w .\{(t, w): t \in\lfloor p\rfloor(\epsilon)\}
$$

Null reduction:

To implement the derivative of parsers for single characters: the null reduction partial parser, $\epsilon \downarrow S$, is handy. This parser can only parse the null string; it returns a set of parse trees stored within:

$$
\epsilon \downarrow S \equiv \lambda w .\{(t, w): t \in S\}
$$

Kleene star:
It is easiest to define the Kleene star of a partial parser $p \in$ $\mathbb{P}(A, T)$ in terms of concatenation, union and reduction, so that $p^{\star} \in \mathbb{P}\left(A, T^{*}\right):$

$$
\begin{aligned}
p^{\star}= & \left(p \circ p^{\star}\right) \rightarrow \lambda(\text { head, tail }) \cdot \text { head : tail } \\
& \cup \epsilon \downarrow\{\rangle\} .
\end{aligned}
$$

The colon operator (:) is the sequence constructor, and \rangle is the empty sequence.

Derivatives of Parser Combinators

- Intuitive definition: $D_{c}(P)=P^{\prime}(A, T)$ if $P(A, T)$; that is, alphabet and parse tree types are the same
- Derivative strips the character and eliminates null parses (doesn't make sense to expand input)
- Formally: $D_{f}(p)=\lambda w . p(c w)-(\mid p p(\epsilon) \times\{(w u))$.

Derivatives of Parser Combinators

Derivatives of atomic parsers:

The derivative of the empty parser is empty:

$$
D_{c}(\emptyset)=\emptyset .
$$

The derivative of the null parser is also empty:

$$
D_{c}(\epsilon)=\emptyset .
$$

Derivatives of combined parsers:

The derivative of the union is the union of the derivative:

$$
D_{c}(p \cup q)=D_{c}(p) \cup D_{c}(q) .
$$

The derivative of a reduction is the reduction of the derivative:

$$
D_{c}(p \rightarrow f)=D_{c}(p) \rightarrow f .
$$

The derivative of the nullability combinator must be empty, The derivative of concatenation requires nullability, in case the since it at most parses the empty string:

$$
D_{c}(\delta(L))=\emptyset .
$$

$$
D_{c}(p \circ q)=\left(D_{c}(p) \circ q\right) \cup\left(\delta(p) \circ D_{c}(q)\right) .
$$

The derivative of a single-character parser is either the null The derivative of Kleene star peels off a copy of the parser: reduction parser or the empty parser:

$$
D_{c}\left(c^{\prime}\right)= \begin{cases}\epsilon \downarrow\{c\} & c=c^{\prime} \\ \emptyset & \text { otherwise }\end{cases}
$$

$$
D_{c}\left(p^{\star}\right)=\left(D_{c}(p) \circ p^{\star}\right) \rightarrow \lambda(h, t) \cdot h: t
$$

Parsing with Derivatives of Parser Combinators

- Compute successive derivatives of the top-level parser with respect to each character in a string
- Supply null character to resultant parser and see if it matches
- How to parse null?

Performance Analysis

- Due to null expansion of concatenation, derivatives grow exponentially, leading to worst-case $O\left(n^{2 n} G^{2}\right)$ where n is input tokens and G is the size of the grammar
- Left: original grammar
- Right: after 10 derivatives

Solution: Compaction

$$
\begin{aligned}
\emptyset \circ p=p \circ \emptyset & \Rightarrow \emptyset \\
\emptyset \cup p=p \cup \emptyset & \Rightarrow p \\
\left(\epsilon \downarrow\left\{t_{1}\right\}\right) \circ p & \Rightarrow p \rightarrow \lambda t_{2} \cdot\left(t_{1}, t_{2}\right) \\
p \circ\left(\epsilon \downarrow\left\{t_{2}\right\}\right) & \Rightarrow p \rightarrow \lambda t_{1} \cdot\left(t_{1}, t_{2}\right) \\
\left(\epsilon \downarrow\left\{t_{1}, \ldots, t_{n}\right\}\right) \rightarrow f & \Rightarrow \epsilon \downarrow\left\{f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right\} \\
\left(\left(\epsilon \downarrow\left\{t_{1}\right\}\right) \circ p\right) \rightarrow f & \Rightarrow p \rightarrow \lambda t_{2} \cdot f\left(t_{1}, t_{2}\right) \\
(p \rightarrow f) \rightarrow g & \Rightarrow p \rightarrow(g \circ f) \\
\emptyset^{\star} & \Rightarrow \epsilon \downarrow\{\rangle\} .
\end{aligned}
$$

"We can implement these simplification rules in a memoized, recursive simplification function. When simplification is deeply recursive and memoized, we term it compaction." [Note: must use recursive, not just top-level reduction, or it still expands exponentially]

Parsing with Compaction: Analysis

- Keeps approximately constant-size grammar while taking successive derivatives until last derivative collapses to parse forest
- Still worst-case exponential, but (conjectured) average-case $\mathrm{O}(\mathrm{nG})$ for parsing and recognition of unambiguous grammars - parsing for ambiguous grammars means returning parse forest, which is necessarily exponential, but recognition of ambiguous grammars also believed to be O(nG)

