
Parsing with Derivatives
Cole Margerum and Isaac Zinman

Overview

● Paper by Matthew Might, David Darais, Daniel Spiewak
● Presented at ICFP, 2011

Background: Definition of Formal Languages

● Atomic languages:
○
○ ε ε
○ ∈ , over some alphabet

● Regular languages: Atomic languages combined with
union, concatenation, Kleene star

● Context-free languages: Regular with mutual
recursion

Brzozowski Derivative - Regular Expressions

Definition:

● ∈

Examples:

●
●
●

Membership with the Derivative

● cw ∈ L iff w ∈ Dc(L)
● Repeat with every character using the previous derivative
● Check if resultant language contains the empty string: if

so, the original string is part of L

Derivatives on the Atomic Languages

●
● ϵ
● ϵ
● ≠

Closures

Union

● ∪ ∪

Kleene Star

● ◦

Concatenation

● ◦ ◦ ϵ ∉
● ◦ ◦ ∪ ϵ∈

Simplification of Concatenation

Nullability Function

● δ ϵ ∉
● δ ϵ ϵ∈

Revised Concatenation:

● ◦ ◦ ∪ δ ◦

Nullability

● δ
● δ ϵ ϵ
● δ
● δ ∪ δ ∪ δ
● δ ◦ δ ◦ δ
● δ ϵ

 Derivatives of Context-Free Languages

● Derivative code for RL doesn’t work with CFG’s
● Recursive implementation of the derivative and the

recursive nature of CFG’s leads to non-termination

Example:

◦ ∪ ϵ

◦ ∪ ϵ

Solutions to Non-Termination

● Laziness
○ Concatenation, Union, and Repetition done by need-only

● Memoization
○ Use derivatives of languages already seen

● Least Fixed Points
○ Expand only as much as necessary…?

Least Fixed Points

From Recognition to Parsing

● Partial parser:
○ ℙ ⊆ → for alphabet A, parse tree T

● Full parser:
○ ⌊ℙ⌋ ⊆ →

● Atomic languages easily translate to parsers
○ Single character -> partial parser for exactly itself
○ Empty set -> reject-everything
○ Empty string -> consume-nothing, accept-everything

Parser Combinators

Union:

Concatenation:

Function reduction:

Parser Combinators

Nullability:

Null reduction:

Kleene star:

Derivatives of Parser Combinators

● Intuitive definition: if ; that is,
alphabet and parse tree types are the same

● Derivative strips the character and eliminates null
parses (doesn’t make sense to expand input)

● Formally:

Derivatives of Parser Combinators
Derivatives of atomic parsers: Derivatives of combined parsers:

Parsing with Derivatives of Parser Combinators

● Compute successive derivatives of the top-level
parser with respect to each character in a string

● Supply null character to resultant parser and see if it
matches
○ How to parse null?

Performance Analysis

● Due to null expansion of concatenation, derivatives grow
exponentially, leading to worst-case O(n2nG2) where n is input
tokens and G is the size of the grammar

● Left: original grammar
● Right: after 10 derivatives

Solution: Compaction

“We can implement these simplification rules in a memoized, recursive
simplification function. When simplification is deeply recursive and memoized,
we term it compaction.” [Note: must use recursive, not just top-level reduction,
or it still expands exponentially]

Parsing with Compaction: Analysis
● Keeps approximately constant-size grammar while taking successive derivatives until

last derivative collapses to parse forest
● Still worst-case exponential, but (conjectured) average-case O(nG) for parsing and

recognition of unambiguous grammars - parsing for ambiguous grammars means
returning parse forest, which is necessarily exponential, but recognition of ambiguous
grammars also believed to be O(nG)

