
A Taste of Reactive Systems
Michael Christensen
July 2, 2018

Reactive Systems
Systems which continously interact with physical environment
("The Synchronous Data Flow Programming Language LUSTRE"
Halbwachs et al. 1991)

Dataflow

Dataflow
Program is a directed graph

Nodes are primitive instructions

Directed arcs are data dependencies

Flow along arcs like unbounded FIFO queue

Initially for exploiting parallelism

Example

Implementation Approaches

Data Availability-Driven (push)
efficient and low-latency (good for RTS)

Demand-Driven (pull)
eliminate unneeded nodes, flexible

Iteration

Loop body variables have same throughout iteration

Variables updated with NEW operator, e.g. NEW X = X + 1

Data Structures

"I-structures" for making undefined data immediately available

Languages

Freedom from side effects

Data dependency = scheduling

Single assignment of variables

E.g. TDFL, LAU, Lucid, Id

Visual
Let user see and manipulate program graph

E.g. DDNs, GPL, LabView, ProGraph, NL

Synchronous Dataflow (see next section)
Number of tokens consumed/produced on each arc is known
at compile-time

Statically schedulable

Synchronous Languages

Synchronous Languages
Notion of clock as first-class values

Program (i.e "reaction") is conjunction of reactions for each
block and connections between blocks

Languages differ in how they deal with parallel composition
constraints

Lustre
x = y + z at each instant k , x = y + z

Declarative

Each variable is a function of discrete time

Variables are 'flows' (infinite sequences of values)

Operators extended pointwise over flows

temporal operators for describing sequential flow:
pre(x) , -> , when , current

Structured programming via nodes
function over typed input flows producing output flows

k k k

Lustre (continued)
Activate different program parts at different rates via clocks

basic clock is finest notion of time (external)

create slower clocks from basic clock, others

x when c

operators operate on same-clock flows

Lustre Example
node COUNT (init, incr: int, reset: bool)
 returns (n: int):
let
 n = init ->
 if reset then init else pre(n) + incr;
tel

node SIMPLE_STOPWATCH
 (start_stop, reset, hs: bool)
 returns (time: int);
var CK, running: bool;
let
 time =
 current(COUNT((0, 1, reset) when CK));
 CK = true -> (HS and running) or reset;
 running =
 TWO_STATES(false, start_stop, start_stop);
tel;

Esterel
Imperative for describing control

Program is a set of nested concurrently running threads,
synchronized on single global clock

On reaction start, thread resumes from pause statement

Threads communicate via global events ("signals")

Preemption statements (abort) tests predicate before
reaction

Esterel (continued)

Example

Synchronous Conclusions
Other languages

Statecharts

Signal

Discussion of
industrial application

compilation techniques
Esterel: automate-based

Signal: solve program abstraction described by clock
and causality calculus

Functional concurrency allows deployment without an OS
scheduler

Reactive Programming

Reactive Programming
Abstractions so programs are reactions to external events

Language manages flow of time and state change
propagation

Based on synchronous dataflow with relaxed real-time
constraints

Behaviors: continuous time-varying values (e.g. time)

Events: potentially infinte streams of value changes
ocurring at discrete points in time (e.g. button press)

Supports higher-order dataflow

Supports dynamic structure

Glitches and lifting

Three Types of Reactive Languages

Functional Reactive

Provides behaviors, events, event and switching combinators

Declarative

Temperature example

E.g. Fran, Flapjax, Scala.react

RP Cousins

Time-varying abstractions not integrated with rest of lang

E.g. Cells, Trellis

Synchronous, Dataflow, and Sync DF

Also "Real-time FRP", "Event-driven FRP"

